• All optical control of the topology of plasma accelerators

    The ability to shape the topology of plasma waves is a remarkable feature, which remains largely unexplored, and that may have deep ramifications into basic plasma physics and relativistic nonlinear optics. This feature is particularly interesting in the context of particle acceleration as it allows to shape the structure of the plasma in unique and novel ways, which are currently inaccessible to more conventional approaches.

    Read more
  • Large scale PIC simulation of high beta magnetorotational instability

    Magnetorotational instability (MRI) is a crucial mechanism for the amplification of magnetic field in astrophysical accretion disks, characterised by a state of differential rotation around a massive central object, such as neutron stars or black holes. The video shows a particle-in-cell (PIC) simulation of the evolution of the toroidal magnetic field in the meridian plane of a portion of a pair plasma (electron-positron) accretion disk, where the dimensions of the simulation box are small compared to the distance of the simulation from the centre of rotation. During the early time of the simulation, the MRI amplifies the magnetic field on the proper wavelength of the instability. Due to the collisionless nature of PIC simulations, the growth of the magnetic field activates a pressure anisotropy in the plasma. This anisotropy triggers another instability called mirror instability, which modifies the structure of the MRI magnetic field with oblique filaments of the…

    Read more
  • Fast electrons gain energy both from the driving laser and its wake

    Our knowledge of matter and energy is shaped by extreme scenarios explored only in current colliders. Thus, unveiling the physical mysteries beyond the energy frontier requires future, more compact and efficient, schemes where relativistic colliding particles reach even higher energies and unknown phenomena take place. For light elementary particles, such as leptons, our community resorts to linear configurations, without synchrotron radiation energy losses, typically RF accelerators. However, in standard RF technologies the accelerating gradients are limited to about 100MeV/m in order to prevent its constituent material breakdown. Budker proposed the use of the plasma media collective fields as means for the energy transfer. Their pioneer concept consisted of sending a short laser pulse trough a plasma gas cell where it developed a wake of plasma density oscillations with associated fields capable of accelerating particles with gradients in the order of the GeV/m. Since then…

    Read more
  • Magnetic vortex in astrophysics collisionless accretion disk

    The accretion disks around massive objects, like black holes, are astrophysical scenarios where the plasma is characterised by a state of differential rotation around the central massive object, with the angular velocity decreasing with the radius. In this configuration the plasma is characterised by the MagnetoRotational Instability (MRI), a crucial mechanism for the growth of the magnetic field in the accretion disks and the transport of angular momentum throughout these objects.
In some astrophysical scenarios, like accretion disks around massive black holes at the centre of the galaxies, the plasma becomes collisionless and a kinetic approach to the dynamic of the system is required. 
Resorting to ab initio 2D PIC simulations, we are able to study the evolution of the kinetic MRI in the radial-vertical plane of a portion of plasma far from the centre of rotation of the accretion disk. The figure shows the space distribution of the toroidal…

    Read more
  • High orbital angular momentum harmonics generation

    High harmonic generation (HHG) results from non-linear optical processes by which n photons, each with a given frequency ω, combine into a single photon with frequency nω. Because it can lead to a strong laser frequency upshift, HHG is routinely used in advanced microscopy techniques. In recent HHG experiments, where the incident photon beam contained an initial level of orbital angular momentum (OAM) ℓ, the final photon contained, in addition, an OAM level given by nℓ. In these experiments, which demonstrated the conservation of angular momentum (ℓ) and energy (ω), the OAM harmonics were coupled to the frequency harmonics.   
    We have recently investigated an unexplored mechanism that opens the possibility to create high OAM harmonics while leaving the laser frequency unchanged, thereby treating the orbital angular momentum as a true independent degree of freedom. Our theoretical calculations and numerical simulations show that the order of the high harmonics obeys…

    Read more
  • Populating pulsar magnetospheres via QED cascades

    Pulsars are astronomical objects that gather a wealth of extreme physical conditions, making them extraordinary physics laboratories (for fields as diverse as general relativity, quantum mechanics, and plasma astrophysics). They are surrounded by strong dipolar magnetic fields (of the order of 1012 G) and support very active, exotic magnetospheres.
    The ultra-intense magnetic field existent in these regions is close to the Schwinger field for vacuum breakdown, and hence the dynamics of charged particles must take into account the self-consistent interaction with these fields, as well as radiation reaction and QED mechanisms such as hard photon emission and their subsequent decay that results in electron-positron pairs. Unravelling the dynamics of astrophysical plasmas in these environments is a critical step towards a complete understanding of a multitude of phenomenology, including the radiation signatures and the spin down of pulsars, the formation and the quasi-steady state of their magnetospheres, and the acceleration of…

    Read more
  • Plasma lenses are not for positrons

    The idea of exploiting the wakefield of a charged particles beam, formed when traversing a plasma, to focus on axis the beam itself was proposed on 1987 by P. Chen . Linear colliders luminosity benefits incredibly from a reduced spot size of the beams, being inversely proportional to the cross-sectional area.
    We simulated a positron beam self-focusing traversing an under-dense plasma lens, which results to be non suitable as the focusing force acting upon the bunch of particles is inhomogeneous.
    During the beam (in red) propagation through the plasma lens (in grey), the wake structure is formed due to the transverse motion of the plasma electrons which are drawn on axis, on the contrary of what happens with an electron bunch which repels the plasma electrons away from its path.
    Since the plasma electrons are…

    Read more
  • Magnetized Current Filaments: Evolution and single particle dynamics

    Weibel Instability is considered as a promising candidate to explain the origin of strong sub-equipartition magnetic fields in Gamma Ray Bursts (GRBs) and Supernova Remnants (SNRs). These instabilities arise when relativistic outflows from accreting black holes interact with the ambient medium. The radiation from these systems can be attributed to the motion of the constituent particles. Recent observations have reported significant fractions of polarized radiation. Understanding single particle dynamics holds the key to decode radiation and its polarization properties. In most of the cases, the interstellar medium is magnetized. Hence, studying Weibel Instability in magnetized plasmas is important. With the availability of high intensity lasers and e-e+ fireball beams in conventional accelerators, it is possible to study the physics of such astrophysical processes in scaled laboratory experiments.
    The movie shows a two dimensional particle in cell (PIC) simulation of a cold relativistic e-p+ plasma flowing perpendicular to the…

    Read more
  • Centrifugally-driven magnetosphere

    Pulsar magnetospheres are one of the most extreme environments in the universe. In the presence of the ultra intense electric and magnetic fields therein (up to 106 V/cm and 1012 G, respectively!), QED phenomena such hard photon emission (and their subsequent decay into electron-positron pairs) and vacuum nonlinear polarization must be taken into account. The dynamics of the (typically electron-positron) plasmas in these systems and their self-consistent interaction with the fields is, therefore, extremely complex. With ab initio particle-in-cell (PIC) simulations, it is possible to follow this self-consistent collective dynamics, as well as the acceleration and the radiation processes.
    The figure above depicts an ab initio PIC simulation of a rotating magnetosphere that captures important collective plasma processes. Electrons and ions are emitted from the surface of a compact, central body that mimics a neutron star, in the regions where the electric field is more intense. This typically occurs in…

    Read more
  • The waves that stand their ground

    The possibility to create matter from vacuum has been one of the most exciting predictions of quantum electrodynamics. Schwinger in 1951 assumed that for creating spontaneously an electron-positron pair in vacuum, the field has to be strong enough to perform a work of an electron rest mass over a Compton wavelength. This became a definition of the critical field of quantum electrodynamics, below which the probability of creating electron-positron pairs becomes very small. In a field higher than the Schwinger critical field, a single electron or an energetic photon can seed a QED cascade, an avalanche of repeated pair creation that leads to a production of a very large number of particles. Unfortunately, this could not be tested in the lab so far, because the Schwinger critical field was (and still is) beyond reach of state-of-the-art laser technology. 
    However, there is a way to observe QED cascades with near-future laser…

    Read more